Flavor & Fragrance Simulation MMP Flavor/Fragrance Applications June 2023

Richard. S. Turk Senior Research Scientist 2RM Technology

Molecular Modeling Pro Flavor Plus

- 1. Physical and Chemical Properties calculated from a molecular odor/flavor and fragrance modeling program
- 2. Applying these Properties to Develop new flavors/fragrances or to Improve on delivery or cost of existing flavors/fragrances
- 3. Predicting High impact flavors or aroma
- 4. Developing time dependent flavor profiles (burst to delay)

Applications

- 1. Odor and taste thresholds for food and beverage flavors
- 2. Thresholds for fragrances and environmental volatiles
- 3. Off-flavor reduction/elimination in food and beverages
- 4. Provide Cost advantages by optimizing ingredients

5. Currently used in fragrance industry to develop wash off applications candle fragrances and the masking of odors

6. Can be used for designing liquid/semi-solid or solid food flavors

Description of Program

1. A tour of the Flavor & Fragrance Program

2. How to use the information for Flavor Development

3. Example of a Fragrance System and Interpretation

4. Conclusion

🛰 Flavor, Fragrance	and Odor S	imulator						_ @ 🛛
File Edit Format Tools	Rotate Ca	lculate Geor	metry Displa	y Help				
	Center	Scale	Translate	Perspect	New Mol	Connect	Clear	
Mode is atom a	dition: Aton	n = C with b	ond 1					

Initial Screen

	·	- · · · ·				• • L	~
oen Macromo	del file					?	×
Look in:	🗀 flavor structur	es	T	+ €	-11 🍋		
My Recent Documents Desktop My Documents	E-4-decenal ebanol ebanol ethyl-2-methylt ethyl-2-methylt ethyl acetate ethyl acetoacel ethyl amyl keto ethyl amyl keto ethyl anyl keto ethyl butyrate ethyl butyrate ethyl butyrate ethyl butyrate ethyl isovalerat ethyl isovalerat ethyl linaly acel	utyrate ate ne te te e ate		ethyl maltol ethyl orthon ethyl pheny ethyl pheny ethyl propio ethyl vanillin ethyldecadie ethylene bra ethylmaltol ethyl-o-metl aucalyptol augenol augenol ace	nethoxy ben I glycidate lacetate nate enoate assylate hoxybenzoa	izoate te	
My Computer	<						>
	File name:	*.DAT			•	Open	
My Network Places	Files of type:	Macromodel file (*.dat))		•	Cancel	

Open Database

🤏 Flavor, Fragrance and Odor S	Simulator	- 7 🛛
File Edit Format Tools Rotate Ca	ialculate Geometry Display Help	
Center Mode = Add C with bond 1 C N 0 H P S F C1 Br 1 Other 1 Add Charge 1 Delete 1	Sc. Minimize ect Clear Conformational analysis Space Molecules Evenly and Show Reactions Superimpose and Center Dock (compare) molecule on molecule Dock (compare) molecule Invert Mirror Identify high strain atom overlaps Reference bonds and angles Reference bonds and angles Image: Compare	
2 3 + -	0	

Open Geometry & Energy Minimization (Optional)

File Ed	it Format Tools	; Rotate	Calculate Geometry Display Help					
		Cent	Flavor/Taste and Odor Thresholds	ol Connect	Clear			
			Inertial Ellipse for Asymetric centers					
			Interatomic Distance Apale					
			Dihedral Angle					
			Current strain					
			Molecular weight					
C N			Molecular volume/density					
пн			Dimensions		1			
			Point charges/dipole moment					
P 5			Solubility Parameters Biografiability					
F CI			Thermodynamics (e.g. boiling pt.)					
Br I			Vapor pressure over a range of temperatures					
Other			Mass Percent					
Ringe			Moments of inertia					
Add			Smiles Notation					
Change								
Delete								
0 1								
2 3								
+ -				0				
					ľ			
							oen Calculate	
						Th	resholds	
	5/23/20	23		Prep	pared for Gen-Scent Research			9

Flavor, Fragrance and Odor	Simulator	X		🔳 🖻 🔰
Exit Units				
- User Inputs	Results (ppm)	Critical properties		
Temperature (degrees C): 37	Odor threshold: 3.170255E-02 to 9.804741E-02	Critical temperature: 573 9105		
Pressure (atmospheres):	Taste/Flavor 0.5520401 to 1.707311	Critical pressure: 00.00011		
Boiling point (degrees C): 129	Parameters used in the calculation	28.03311		
Density: 0.8663743	Rotational Translational factor 17.78279 (cm sec^2):	Critical volume: 446		
Molecule name: ethylmethylbutyrate	Vapor pressure (atm): 2.555915E-02	Moments of inertia		
Choose the solvent:	Critical compressibility: 0.2654921	Component 1: 573.2224		
water	Acentric factor: 0.4528425	Component 2: 208.0798		
benzene	Second virial component -3387.559 (cm^3/mole):	Component 3: 643.5346		
ethanol	Diffusion coefficient (cm ² sec) 7.240639E-02	Radius of Gyration: 3.30826		
ethylmethylbutyrate	G factor (odor)(cm/sec^2): 10171.73	Print Report		
Run	G factor (taste)(cm/sec^2): 177121.5		· ` `	
Optional calculation parameters	O-Venel selectever en tre	Quit		
ppm of the Flavor:	Mole fraction in liquid:			
Brix level of beverage	Mole fraction in vapor:			
Density of beverage:				
* -	U		1	
				Run for Initial Calculation of Flavor Properties

🛱 Flavor, Fragrance and Odor	Simulator	×	
Exit Units			
User Inputs	Results (ppm)	Critical properties	
Temperature (degrees C): 37	Odor threshold: 3.170255E-02 to 9.804741E-02	Critical temperature: 573 9105	
Pressure (atmospheres):	Taste/Flavor 0.5520401 to 1.707311	Critical pressure: 20.02211	
Boiling point (degrees C): 129	Parameters used in the calculation	20.03311	
Density: 0.8663743	Rotational Translational factor 17.78279 (cm sec^2):	Critical volume: 446	
Molecule name: ethylmethylbutyrate	Vapor pressure (atm): 2:555915E-02	Moments of inertia	
Choose the solvent:	Critical compressibility: 0.2654921	Component 1: 573.2224	
water 🔥	Acentric factor: 0.4528425	Component 2: 208.0798	
acetone benzene diethyl ether	Second virial component -3387.559 (cm^3/mole):	Component 3: 643.5346	
ethanol	Diffusion coefficient (cm ² sec) 7.240639E-02	Radius of Gyration: 3.30826	
ethylmethylbutyrate	G factor (odor)(cm/sec^2): 10171.73	Print Report	
Run	G factor (taste)(cm/sec^2): 177121.5		
Optional calculation parameters	Optional calculation results:	<u>U</u> uit	
ppm of the Flavor: 10	Mole fraction in liquid: 1 333034E-06		
Brix level of beverage 5.0	Mole fraction in vapor: 1.010146E-02		
Density of beverage: 1.09	1.0101402-03		🂐 Plot concentration vs. time and 📃 🗖 🔀
	U		- Time vs. concentration graph
+ -			Maximum time to graph (sec): 600
		•	Distance vs. concentration graph
			Maximum distance to graph (cm): 5
			Time (sec) for distance vs. concentration 10
			<u>R</u> un <u>C</u> ancel
		7	
			Run Option

Run Optional Graphs for Vapor Concentrations

- - X

5/23/2023

Prepared for Gen-Scent Research by Richard Turk

- terre in the second s

11-1

File Edit	Format Tools Rotate	Calculate Geometry Display Help	_				
	Cento	Flavor/Taste and Odor Thresholds	ol Connect	Clear			
1	Mode = Add C with bond	Inertial Ellipse for Asymetric centers					
		Interatomic Distance					
		Angle					
		Dihedral Angle					
		Current strain					
/		Molecular weight					
CN		Molecular volume/density					
0 H		Dimensions					
рс		Point charges/dipole moment Solubility Decemptors					
ГЭ		Bioavailability					
F CI		Thermodynamics (e.g. boiling pt.)					
Br I		Vapor pressure over a range of temperatures					
Other		Mass Percent					
oulei		Moments of inertia					
Rings		Smiles Notation					
Add							
Change							
Delete							
Delete							
0 1				\prec			
2 3			0				
+ -			Ŭ				
				P			
				1			
				\sim	1		
						Solubility Dre	adiatar
							POICIOI

CN

0 H

P S

F CI

Br I

Other

Rings

Add

Change

Delete

0 1

2 3

+

File Edit Format Tools Rotate Calculate Geometry Display Hi

Center Scale Translate Perspect New Mol Connect Clear Mode = Add C with hond 1 📕 mmp - Notepad File Edit Format View Help Solubility Parameters (25 C) for ethylmethylbutyrate: -- Fragment addition LogP =2.128 -- Atom Based LogP =1.7932 -- Atom Based MR =35.9632 -- Q Log P: N. Bodor and P. Buchwald, J. Phys. Chem. B, 1997, 101: 3404-3412 -- 0 Log P= 2.390312 -- Hvdrogen bonding number= 2 -- Molecular volume used for QLogP= 119.8848 -- Note: Value of Q Log P will vary slightly from Bodor's due to difference in the method of the molecular volume calculation. -- molecular weight HLB= 2.75809404245717 -- volumetric HLB = 2.77755224993874 -- Hansen's 3-D solubility parameters (delta/sqr(MPa)) -empirical: -- dispersion = 15.36521 -- polarity = 3.198988 -- hydrogen bonding = 5.918324 -- solubility parameter = 16.77348 -- van Krevelen and Hoftyzer's 3-D solubility parameters (JA(1/2))/(cmA(3/2))): -- dispersion = 15.57508 -- polarity = 3.261449-- hydrogen bonding = 6.825842 -- molar volume (cm/3/mol) = 150.24 -- solubility parameter = 17.31509 -- Note: some references use $cal^{(1/2)}/cm^{(3/2)}$ [divide above by 2.046 to convert]. -- Hoy's system (1985) for calculation of the 3-D solubility parameters $((J^{1/2}))/(cm^{3/2})$))):-- molar attraction function (solubility parameter) = 19.70002 -- dispersion = 14.62914 -- polarity = 7.491348-- hydrogen bonding = 10.86089 -- molecular aggregation number= 1.436671 -- Energy of cohesion (J/mol)(Ref: Hoy)= 39748.55 -- molar volume = 129.01 -- Energy of cohesion (J/mol)(Ref: Fedors)= 45440 -- hydration number =1.5 -- hydrophilic surface area = 2.19178273018375 cm/2/mol x10/9 -- % hydrophilic surface area = 18.3395393150312

Definition Aroma -

- Optimal release of flavor compound based on releasing media and physico-chemical properties of the flavor.
- These properties can be measured experimentally, defined empirically or calculated using physical properties.
- Define "Aroma" or "optimized release values" as the value of a calculated release pressure of a flavor out of water (or a chosen specific food or solution) per time.

 Water release pressure is the product of the diffusion coefficient X G factor (odor) X odor threshold (ppm)

Predictive Importance of Aroma Release Values

 Release accurately predicts the release order in time of materials in a multi-flavor system

 Release can be calculated for any flavor/fragrance. Multiply release by parts added and order from highest to lowest.

•Ability to group materials in release order to further control aroma hedonics and engineer consumer perception.

Ability to design new flavors and hedonics

Example For a System of Flavors/Fragrances Predicting the Aroma on Dilution with Water

Calculation of total release pressure, and Impact on release using 50 flavor/fragrance components

The following slides show odor predictions:

- 1. Order of release of 50 components from a mixture at a given composition based on order of magnitude changes in release pressure
- 2. The order is of undefined time but usually represents 5 second intervals
- 3. Within each order is a major impact component

4. Odor impact calculation for each component can be determined by running optional graphs of vapor concentration and comparing concentration in vapor with respect to odor threshold.

Example Calculation of Release and Total Release And Ordering of 50 Fragrances in Order of release: Colors represent magnitude change in total release Initial release 0 seconds to 20 seconds

		parts	clogP	B.P.	Water Release Value Ω	Ω x Qty	%	<u>Ω x %</u>
d-LIM	ONENE	2	4.83	174.00	12.89011949473	25.780238989	0.023781213	0.306542675
ETHY	L BUTYRATE	0.1	1.77	121.95	70.55231284335	7.055231284	0.001189061	0.083890978
ETHY	L 2-METHYLBUTYRATE PUR	0.1	2.26	129.00	55.94787687423	5.594787687	0.001189061	0.066525418
MANZ	ANATE	0.1	2.76	156.32	5.90364669599	0.590364670	0.001189061	0.007019794
LII		9	3.28	198.50	0.03077016006	0.276931440	0.107015458	0.003292883
DI	OL	3	3.60	192.00	0.06353152707	0.190594581	0.035671819	0.002266285
ΤF		0.3	2.67	189.16	0.3300000000	0.099000000	0.003567182	0.001177170
FR	+ CIS)	0.1	3.13	196.74	0.58404016932	0.058404017	0.001189061	0.000694459
CI		0.2	1.61	156.00	0.25661199021	0.051322398	0.002378121	0.000610254
EIE		1.3	2.08	216.00	0.03934973997	0.051154662	0.015457788	0.000608260
CI	FCC	0.7	3.56	225.00	0.05793558671	0.040554911	0.008323424	0.000482222
VE		2.5	4.42	239.00	0.00971745877	0.024293647	0.029726516	0.000288866
AL		0.5	3.67	210.00	0.04323356349	0.021616782	0.005945303	0.000257037
AL		0.5	2.08	214.00	0.04188905618	0.020944528	0.005945303	0.000249043
CI	ETATE	0.1	2.61	198.00	0.18024312711	0.018024313	0.001189061	0.000214320
EII		2.9	3.87	220.00	0.00418909839	0.012148385	0.034482759	0.000144452
EIE	ATE	0.5	2.57	222.00	0.02298313800	0.011491569	0.005945303	0.000136642
FRUC	TONE	0.3	1.30	207.99	0.03465057668	0.010395173	0.003567182	0.000123605
LIFF		0.1	2.48	184.78	0.10283040388	0.010283040	0.001189061	0.000122272
DIH	POL	0.2	3.10	201.00	0.03596706525	0.007193413	0.002378121	0.000085534
IONO	NE BETA PURE	0.9	3.96	239.00	0.00733636218	0.006602726	0.010701546	0.000078510
DII	INYL AC	1	3.44	250.00	0.00445927024	0.004459270	0.011890606	0.000053023
VEI		0.1	4.42	237.00	0.01121131905	0.001121132	0.001189061	0.000013331
TE		0.1	4.34	239.87	0.01009611655	0.001009612	0.001189061	0.000012005

5/23/2023

Prepared for Gen-Scent Research

by Richard Turk

Continued Release values of 50 Fragrances at 20 and 25 seconds

		parts	<u>clogP</u>	<u>B.P.</u>	Water Release Value Ω	<u>Ω x Qty</u>	<u>%</u>	<u>Ωx%</u>
FL		2.5	1.65	243.05	0.00018830080	0.000470752	0.029726516	0.000005598
TE		0.1	3.33	218.00	0.00450287663	0.000450288	0.001189061	0.000005354
0)		0.01	2.31	226.46	0.03278790317	0.000327879	0.000118906	0.000003899
1U		0.6	3.90	238.50	0.00052269564	0.000313617	0.007134364	0.000003729
FL		0.3	3.91	260.00	0.00099601267	0.000298804	0.003567182	0.000003553
AL .	PROPIONAT	0.3	4.12	265.27	0.00094605475	0.000283816	0.003567182	0.000003375
HE	EHYDE	15	4.90	308.70	0.00001630285	0.000244543	0.178359096	0.000002908
G/	NE	0.3	2.38	266.88	0.00058484054	0.000175452	0.003567182	0.000002086
GAMMA UNDECA	LACTONE	0.3	3.06	260.00	0.00047556253	0.000142669	0.003567182	0.000001696
alpha-DAMASCON	1E	0.1	3.62	260.00	0.00136091601	0.000136092	0.001189061	0.000001618
MA(5719	3	2.83	296.58	0.00004273000	0.000128190	0.035671819	0.000001524
HEL		1.4	2.51	286.03	0.00002808947	0.000039325	0.016646849	0.000000468
AD(0.4	5.35	286.90	0.00008031443	0.000032126	0.004756243	0.00000382
BEN		0.2	1.08	205.40	0.00015965114	0.000031930	0.002378121	0.00000380
BAC		1.5	5.14	276.69	0.00002111182	0.000031668	0.017835910	0.00000377
GAL	1	10	6.06	345.00	0.00000288325	0.000028832	0.118906064	0.00000343
HEC		15	2.90	307.00	0.00000139777	0.000020967	0.178359096	0.00000249
SAN		1.3	5.15	275.79	0.00001362896	0.000017718	0.015457788	0.000000211
DAMASCENONE		0.03	4.04	275.64	0.00049168874	0.000014751	0.000356718	0.000000175
C/		0.03	2.43	266.07	0.00019327221	0.000005798	0.000356718	0.00000069
۹N		0.03	4.76	345.00	0.00004104660	0.000001231	0.000356718	0.00000015
El	SYLATE	4.3	4.71	333.00	0.0000028348	0.000001219	0.051129608	0.00000014
D)	ALS	0.4	1.48	292.20	0.00000261059	0.000001044	0.004756243	0.000000012
VE	2	0.1	5.36	340.00	0.00000452415	0.000000452	0.001189061	0.00000005
E>	4L	0.2	6.15	344.80	0.00000149013	0.00000298	0.002378121	0.00000004
ME	E	0.1	2.84	319.79	0.0000000324	0.000000000	0.001189061	0.000000000

Graph of Odorant Residence Time in Headspace According to their Release Values

Reference: Perfumes for Rinse-Off Systems U.S. Patent 7,446,079 B2

5/23/2023

Prepared for Gen-Scent Research by Richard Turk Odor Evaluation of 50 component mixture and Hedonic Progression from Water

Water Release Order Predicts

Citrus tangerine

Green floral apple

Floral

Peach tropical, papaya

Floral musl

Evaluation Comments:

"A lot of pop, tropical fruity citrus, grapefruit citrus blend, green, cassis, floral amber" -"Cucumber floral aldehydic, apple, rose" "Floral, fresh citrus grapefruit orange, musk, floral peach woody"

Predicting Odor Impact within a Release Group

phs Tools		
Concentration vs. time for manzanate at 2 cm mg/L Bavor in vapor		
0034 0 0 0 0 125 125 100 (sec)	Flavor, Fragrance and Odor Simulator Exit Units Use Inputs Temperature (degrees C): 37 Pressure (atmospheres): 1 Boiling point (degrees C): 167:27 Density: 0.8442411 Molecule name manzanate Choose the solvent: Vertice dethyl ether ethanol Choose the solvent: Vertice manzanate Choose the solvent: Vertice manzanate Choose the solvent: Vertice Choose the solven	12 to 6.606704E-02 Critical properties 12 to 1.267008 Critical temperature: 616.8702 ulation Critical resource 25.41685 Critical volume: 501 10 1.267008 Critical volume: 501 Critical volume: 501 10.0173248 Component 1: 873.5158 Component 1: 873.5158 10.4909865 Component 1: 1873.5158 Component 3: 944.3303 rec) 6.599146E-02 Print Report 103605.48228794 Quit Quit 11.213021E-07 Odor Threshold exceeded at time 1 sec at distance 0 cm. 1 1 1

Compare Concentrations in Headspace at 25 seconds with Odor Threshold to Calculate an Odor Index (0.0068/0.0131 = 0.519)

5/23/2023

Prepared for Gen-Scent Research by Richard Turk

Rationale for Flavor Design

 Values for total water release are quantity related: Release_{final}= (parts in formula) x Release

- Able to move up and/or down the defined "release" depending on the composition in formula and value of Release: dynamic and flexible design of flavors within a specific formula

 Able to predict residence time or duration of aroma by overdosing on specific release or compounds within certain release group

- Better control of aroma profile and ability to focus on the hedonic fingerprint of certain release times by engineering the previous and/or targeted ones – I.e. burst or fresh release perception of certain notes or change of hedonic impression of the released flavor after a certain time

Computer Applications in Flavor/Fragrance Design

Capabilities for Criteria for Success:

- Optimize aroma or water release formulations using predicted properties
 - Engineer flavor aroma character according to calculated release profiles
 - Cost considerations and economical advantages can be predicted
 - Predict odor indices related to ODT in air and in liquid

 Program can be applied to water/emulsion systems, flavor burst, and with off-flavors or other systems requiring flavor modeling

See-US Patent 7446079B2 for more details